MECÂNCIA GENERALIZADA GRACELI DE INTERAÇÕES E TRANSFORMAÇÕES.
LEI -
TODA INTERAÇÃO LEVA A TRANSFORMAÇÕES, E VICE-VERSA.
INTERAÇÕES COMO E EM:
NAS INTERAÇÕES DAS FORÇAS FUNDAMENTIAS.
INTERAÇÕES DE SPIN - ÓRBITA.
ESTRUTURA - TEMPERATURA.
DISTRIBUIÇÃO ELETRÔNICA - NÍVEIS DE ENERGIA - BANDAS.
ELÉTRONS - FÓNOS.
ELÉTRONS - ELÉTRONS.
ESTADO QUÂNTICO - NÚMERO QUÃNTICO.
ENTROPIA -TEMPERATURA - MOVIMENTO BROWNIANO - CAMINHOS DE PARTÍCIULAS.
CATEGORIA - DIMENSÕES - FENÔMENOS [NO SISTEMA SDCTIE GRACELI].
ENTROPIA - ENTALPIA. ETC.
VEJAMOS AS INTERAÇÕES DE CAMPOS.
E EM RELAÇÃO AO SISTEMA DE MECÂNICA GENERALIZADO GRACELI.
eletromagnetismo quântico químico relativístico Graceli.
MECÂNICA DO SISTEMA DIMENSIONAL GRACELI.
ONDE A MAIORIA DOS FENÔMENOS FÍSICOS [EM TODAS AS ÁREAS] VARIAM CONFORME O SISTEMA DIMENSIONAL GRACELI.
SENDO ELE;
EQUAÇÃO GERAL DE GRACELI.[quantização de Graceli].
G ψ = E ψ = IGFF E [tG+].... .. =
G ψ = E ψ = IGFF E [tG+]ψ ω /c] = [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] [ q G*]ψ μ / h/c ψ(x, t) [x t ]..
[ q [tG*] ==G ψ = E ψ = IGFF E [tG+].... ..
SISTEMA GRACELI DE:
TENSOR [tG+] GRACELI = IGFF + SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO E ESPECÍFICO NÍVEL DE ENERGIA., POTENCIAL DE ENERGIA, POTENCIAL QUÍMICO, SISTEMA GRACELI DO INFINITO DIMENSIONAL.
ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.
[ q [tG*] = energia quântica Graceli.
Força fundamental - INTERAÇÕES GRACELI IG =
IGFF = INTERAÇÕES GRACELI - Força fundamental.
T = TEMPERATURA.
IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE. [1]
1 / IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE. [-1]
IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE. / c .
Uma analogia comumente utilizada para explicar tal fenômeno envolve uma colina e um trenó subindo em direção ao cume da colina. Imaginando que o trenó esteja subindo a colina, parte de sua energia cinética que se transforma em energia potencial gravitacional U. Quando o cume da colina é atingido, podemos pensar que o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar do outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para direita com energia E como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplória o efeito Túnel.[6]
Considerando um elétron e a densidade de probabilidade da onda de matéria associada a ele, podemos pensar em três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as 3 regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda - a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[2]
O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.
, / G ψ = E ψ = IGFF E [tG+].... ..
Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia de Ub-E entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero.[6]
Tunelamento quântico
Feynman - Graceli.
O tunelamento quântico pode ser modelado pelo uso da formulação de integral de caminho para determinar a ação da trajetória através de uma barreira de potencial. Usando a aproximação WKB, o a taxa de tunelamento () pode ser determinado por:
- / G ψ = E ψ = IGFF E [tG+].... ..
sendo a ação efetiva e um fator multiplicativo. Esta forma é especialmente útil em um sistema dissipativo, onde o sistema e o ambiente deve ser modelada juntos. Usando a equação de Langevin para o modelo de movimento Browniano, o caminho de formação integral que pode ser usado para determinar uma ação eficaz e pré-exponencial modelo para ver o efeito da dissipação no tunelamento .[11] A partir deste modelo, taxas de tunelamento de sistemas macroscópicos podem ser previstas em temperaturas finitas.

Comentários
Postar um comentário