MECÂNCIA GENERALIZADA GRACELI DE INTERAÇÕES E TRANSFORMAÇÕES.


LEI -

TODA INTERAÇÃO LEVA  A TRANSFORMAÇÕES, E VICE-VERSA.


INTERAÇÕES COMO E EM:

NAS INTERAÇÕES DAS FORÇAS FUNDAMENTIAS.

INTERAÇÕES DE SPIN - ÓRBITA.

ESTRUTURA - TEMPERATURA.

DISTRIBUIÇÃO ELETRÔNICA - NÍVEIS DE ENERGIA - BANDAS.

ELÉTRONS - FÓNOS.

ELÉTRONS - ELÉTRONS.

ESTADO QUÂNTICO - NÚMERO QUÃNTICO.

ENTROPIA -TEMPERATURA - MOVIMENTO BROWNIANO - CAMINHOS DE PARTÍCIULAS.

CATEGORIA - DIMENSÕES - FENÔMENOS [NO SISTEMA SDCTIE GRACELI].


ENTROPIA - ENTALPIA. ETC.


VEJAMOS AS INTERAÇÕES DE CAMPOS.

E EM RELAÇÃO AO SISTEMA  DE MECÂNICA GENERALIZADO GRACELI.



   eletromagnetismo quântico químico relativístico Graceli.



MECÂNICA DO SISTEMA DIMENSIONAL GRACELI.

ONDE A MAIORIA DOS FENÔMENOS FÍSICOS [EM TODAS AS ÁREAS] VARIAM CONFORME O SISTEMA DIMENSIONAL GRACELI.

SENDO ELE;



      EQUAÇÃO GERAL DE GRACELI.[quantização de Graceli].

  G ψ = E ψ = IGFF   E [tG+].... ..  =

G ψ = E ψ = IGFF  E [tG+]ψ ω /c] =   [/ ] /  /   = ħω [Ϡ ]  [ξ ] [,ς]   [ q G*]ψ μ / h/c ψ(xt)  [x  t ]..



q [tG*] ==G ψ = E ψ = IGFF   E [tG+].... .. 

SISTEMA GRACELI DE:

 TENSOR [tG+] GRACELI = IGFF + SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO  E ESPECÍFICO NÍVEL DE ENERGIA., POTENCIAL DE ENERGIA, POTENCIAL QUÍMICO,  SISTEMA GRACELI DO INFINITO DIMENSIONAL.


ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI. 

q [tG*] = energia quântica Graceli.



Força fundamental - INTERAÇÕES GRACELI IG =


IGFF = INTERAÇÕES GRACELI -  Força fundamental.


 T = TEMPERATURA.


PERMEABILIDADE MAGNÉTICA .
INTERAÇÃO SPINS ÓRBITA.
MOMENTUM MAGNÉTICO.
DISTRIBUIÇÃO ELETRÔNICA DOS ELEMENTOS QUÍMICOS.
NÍVEIS E SUBNIVEIS DE ENEREGIA.
BANDAS DE ENERGIAS.

IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE. [1]




IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE./G ψ = E ψ =  E [tG+].... ..  [2]




1 / IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE. [-1]




1 / IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE./G ψ = E ψ =  E [tG+].... ..  [-1]





RELATIVIDADE DAS FORÇAS FUNDAMENTAIS.

IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE. / c .





IGFF = FF / T . PM. ISO . MM. DEEQ. NE. BE./G ψ = E ψ =  E [tG+].... ../ c .


Absorção molecular

Uma molécula típica, , possui vários níveis de energia diferentes. Quando uma molécula absorve um fóton, sua energia aumenta em uma quantidade igual à da energia do fóton. A molécula então entra em um estado excitado.

/ G ψ = E ψ =IGFF[  E [tG+].... ../ c .

Fótons na matéria

Quando fótons passam através de material, tal como num prisma, frequências diferentes são transmitidas em velocidades diferentes. Isto é chamado de refração e resulta na dispersão das cores, onde fótons de diferentes frequências saem em diferentes ângulos. Um fenômeno similar ocorre na reflexão onde superfícies podem refletir fótons de várias frequências em diferentes ângulos.

relação de dispersão associada para fótons é uma relação entre a frequênciaf, e comprimento de onda, λ. ou, equivalentemente, entre sua energiaE, e momentop. Isto é simples no vácuo, desde que a velocidade da onda, v, é dada por

 
/ G ψ = E ψ = IGFF [ E [tG+].... ../ c .

As relações quânticas do fóton são:

 e 
/ G ψ = E ψ = IGFF [ E [tG+].... ../ c .

Onde h é constante de Planck. Então nós podemos escrever esta relação como:

 
/ G ψ = E ψ = IGFF [ E [tG+].... ../ c .

que é característica de uma partícula de massa zero. Desta forma vemos como a notável constante de Planck relaciona os aspectos de onda e partícula.


equação para a energia do fóton[5] é

 / G ψ = E ψ = IGFF [ E [tG+].... ../ c .

Onde E é a energia do fóton, h é a constante de Planckc é a velocidade da luz no vácuo e λ é o comprimento de onda do fóton. Como h e c são ambos constantes, a energia do fóton varia diretamente em relação ao comprimento de onda λ.

Para encontrar a energia do fóton em eV, usando o comprimento de onda em micrômetros, a equação é aproximadamente

 / G ψ = E ψ =IGFF[  E [tG+].... ../ c .

Portanto, a energia do fóton de comprimento de onda de 1 μm, próximo à da radiação infravermelho, é aproximadamente 1,2398 eV.

Como ,/ G ψ = E ψ =IGFF[  E [tG+].... ../ c .

/ G ψ = E ψ =IGFF[  E [tG+].... ../ c .

Esta equação é conhecida como a relação de Planck-Einstein. Substituindo h por seu valor em J⋅s e f por seu valor em hertz resulta na energia do fóton em joules. Portanto, a energia do fóton à frequência de 1 Hz é 6,62606957×10−34 joules ou 4,135667516×10−15 eV.

Em química e engenharia óptica,

 / G ψ = E ψ = IGFF [ E [tG+].... ../ c .

é usada onde h é a constante de Planck e a letra grega ν (ni) é a frequência do fóton.[

 onde f é a frequência, a equação da energia pode ser simplificada para



Através das descrições quânticas da radiação eletromagnética propostas por Albert Einstein e Max Planck, o físico dinamarquês Niels Bohr desenvolve seu modelo atômico a partir de quatro postulados:[3]

  1. Os elétrons que circundam o núcleo atômico existem em órbitas que têm níveis de energia quantizados.
  2. A energia total do elétron (cinética e potencial) não pode apresentar um valor qualquer e sim, valores múltiplos de um quantum.[1]
  3. Quando ocorre o salto de um elétron entre órbitas, a diferença de energia é emitida (ou suprida) por um simples quantum de luz (também chamado de fóton), que tem energia exatamente igual à diferença de energia entre as órbitas em questão.
  4. As órbitas permitidas dependem de valores quantizados (bem definidos) de momento angular orbital, L, de acordo com a equação

 / G ψ = E ψ =IGFF[  E [tG+].... ../ c .

onde n = 1, 2, 3, ... é chamado de número quântico principal e h é a constante de Planck.[4]

A regra 4 afirma que o menor valor possível de n é 1. Isto corresponde ao menor raio atômico possível, de 0,0529 nm, valor também conhecido como raio de Bohr. Nenhum elétron pode aproximar-se mais do núcleo do que essa distância.

O modelo de átomo de Bohr é às vezes chamado de modelo semi-clássico do átomo, porque agrega algumas condições de quantização primitiva a um tratamento de mecânica clássica. Este modelo certamente não é uma descrição mecânica quântica completa do átomo. A regra 2 diz que as leis da mecânica clássica não valem durante um salto quântico, mas não explica que leis devem substituir a mecânica clássica nesta circunstância. A regra 4 diz que o momento angular é quantizado, mas não diz por quê.




Na mecânica quânticaequação de Dirac é uma equação de onda relativística proposta por Paul Dirac em 1928 que descreve com sucesso partículas elementares de spin-½, como o elétron. Anteriormente, a equação de Klein-Gordon (uma equação de segunda ordem nas derivadas temporais e espaciais) foi proposta para a mesma função, mas apresentou severos problemas na definição de densidade de probabilidade. A equação de Dirac é uma equação de primeira ordem, o que eliminou este tipo de problema. Além disso, a equação de Dirac introduziu teoricamente o conceito de antipartícula, confirmado experimentalmente pela descoberta em 1932 do pósitron, e mostrou que spin poderia ser deduzido facilmente da equação, ao invés de postulado. Contudo, a equação de Dirac não é perfeitamente compatível com a teoria da relatividade, pois não prevê a criação e destruição de partículas, algo que apenas uma teoria quântica de campos poderia tratar.

A equação propriamente dita é dada por:

/ G ψ = E ψ =IGFF [  E [tG+].... ../ c .

na qual m é a massa de repouso do elétron, c é a velocidade da luzp é o operador momentum linear  é a constante de Planck divida por 2πx e t são as coordenadas de espaço e tempo e ψ(xt) é uma função de onda com quatro componentes.


Comentários

Postagens mais visitadas deste blog